Mining Both Positive and Negative Impact-Oriented Sequential Rules from Transactional Data
نویسندگان
چکیده
Traditional sequential pattern mining deals with positive correlation between sequential patterns only, without considering negative relationship between them. In this paper, we present a notion of impact-oriented negative sequential rules, in which the left side is a positive sequential pattern or its negation, and the right side is a predefined outcome or its negation. Impact-oriented negative sequential rules are formally defined to show the impact of sequential patterns on the outcome, and an efficient algorithm is designed to discover both positive and negative impact-oriented sequential rules. Experimental results on both synthetic data and real-life data show the efficiency and effectiveness of the proposed technique.
منابع مشابه
Vertical Mining with Incomplete Data
Mining frequent patterns is essential in many data mining methods. Frequent patterns lead to the discovery of association rules, strong rules, sequential episodes, and multi-dimensional patterns. Patterns should be discovered in a time and space efficient manner. Vertical mining algorithms key advantage is that they can outperform their horizontal counterparts in terms of both time and space ef...
متن کاملAlgorithms and Measures in Sequence Data Mining
Sequential pattern mining, first introduced in [1], is one of the most challenging problems in data mining [3]. It aims to extract the relationships between occurrences of sequential itemsets i.e. to look for any specific order of the itemsets. Sequential pattern mining has large applications, such as the analysis of DNA sequences, stock marketing, web access patterns, transactional databases, ...
متن کاملA false negative approach to mining frequent itemsets from high speed transactional data streams
Mining frequent itemsets from transactional data streams is challenging due to the nature of the exponential explosion of itemsets and the limit memory space required for mining frequent itemsets. Given a domain of I unique items, the possible number of itemsets can be up to 2 1. When the length of data streams approaches to a very large number N, the possibility of an itemset to be frequent be...
متن کاملNegative-GSP: An Efficient Method for Mining Negative Sequential Patterns
Different from traditional positive sequential pattern mining, negative sequential pattern mining considers both positive and negative relationships between items. Negative sequential pattern mining doesn’t necessarily follow the Apriori principle, and the searching space is much larger than positive pattern mining. Giving definitions and some constraints of negative sequential patterns, this p...
متن کاملA new approach based on data envelopment analysis with double frontiers for ranking the discovered rules from data mining
Data envelopment analysis (DEA) is a relatively new data oriented approach to evaluate performance of a set of peer entities called decision-making units (DMUs) that convert multiple inputs into multiple outputs. Within a relative limited period, DEA has been converted into a strong quantitative and analytical tool to measure and evaluate performance. In an article written by Toloo et al. (2009...
متن کامل